Understanding IPv6 Addressing
IPv6 uses 128-bit (16-byte) addresses that are expressed in colon-hexadecimal form. For example, in the address 2001:DB8:3FA9:0000:0000:0000:00D3:9C5A, each block of 4-digit hexadecimal numbers represents a 16-bit digit binary number. The eight blocks of four-digit hexadecimal numbers thus equal 8 x 16 = 128 bits in total.
You can shorten colon-hexadecimal addresses by suppressing leading zeros for each block. Using this technique, the representation for the preceding address now becomes 2001:DB8:3FA9:0:0:0:D3:9C5A.
You can shorten colon-hexadecimal addresses even further by compressing contiguous 0 (hex) blocks as double colons ("::"). The address in this example thus shortens to 2001:DB8:3FA9::D3:9C5A. Note that only one double colon can be used per IPv6 address to ensure unambiguous representation.
In this tutorial:
- Deploying IPv6
- Understanding IPv6
- Understanding IPv6 Terminology
- Understanding IPv6 Addressing
- Understanding IPv6 Prefixes
- Understanding IPv6 Address Types
- Understanding Unicast Addresses
- Identifying IPv6 Address Types
- Understanding Interface Identifiers
- Comparing IPv6 with IPv4
- Understanding IPv6 Routing
- How IPv6 Routing Works
- IPv6 Route Determination Process
- IPv6 Routing Table Structure
- Understanding ICMPv6 Messages
- Understanding Neighbor Discovery
- Understanding Address Autoconfiguration
- Understanding Name Resolution
- Understanding Name Queries
- Understanding Name Registration
- PTR Records and IPv6
- IPv6 Enhancements in Windows 7
- Summary of IPv6 Enhancements in Windows 7
- Configuring and Troubleshooting IPv6 in Windows 7
- Configuring IPv6 in Windows 7 Using the User Interface
- Configuring IPv6 in Windows 7 Using Netsh
- Other IPv6 Configuration Tasks
- Enabling or Disabling IPv6
- Disabling Random Interface IDs
- Resetting IPv6 Configuration
- Displaying Teredo Client Status
- Troubleshooting IPv6 Connectivity
- Planning for IPv6 Migration
- Blocking Teredo
- Understanding ISATAP
- Migrating an Intranet to IPv6
- Step 1: Upgrading Your Applications and Services
- Step 2: Preparing Your DNS Infrastructure
- Step 3: Upgrading Your Hosts
- Step 4: Migrating from IPv4-only to ISATAP
- Step 5: Upgrading Your Routing Infrastructure
- Step 6: Upgrading Your DHCP Infrastructure
- Step 7: Migrating from ISATAP to Native IPv6
- The Advantages of IPv6
- Address Resolution in IPv6