Securing Wireless Networks
Wireless-based communication systems that function over the radio frequencies have the following characteristics:
- Invisible Wireless communication travels over invisible airwaves.
- Almost boundless Restricting or constraining the boundaries of wireless communications can be difficult, thereby making it possible for the communications to end up in unintended locations.
- Easy to monitor and observe using the proper equipment Preventing unwanted parties from monitoring or observing the communications can be difficult.
For these reasons, wireless communications have a notoriety of being insecure. Yet wireless communications are indispensable, because they offer us so much convenience. The best we can hope for is to try to find ways to manage and mitigate their undesirable characteristics.
This tutorial examines some of the ways that have been developed to make wireless communications more secure. Note that making advancements in securing wireless communications, as in other IT fields, is like trying to hit a moving target. As a result, newer and better methods are constantly being developed as weaknesses or vulnerabilities are discovered in existing solutions.
Let's start by taking a brief look back into the past; then we'll work our way up to the present methods used for securing wireless communications.
In this tutorial:
- Security Background
- Security Services
- Cryptographic Concepts and Terms
- Encryption and Decryption
- Keyspace
- Exclusive OR (XOR)
- Algorithm
- Asymmetric Encryption Algorithms
- Public-Private Key Cryptography
- Cipher
- Concealment Ciphers vs. Running Key Ciphers
- Stream Ciphers vs. Block Ciphers
- Cipher Examples
- Cipher Implementations
- Wi-Fi Protected Access
- TKIP/WPA
- Wi-Fi Protected Access 2 (WPA2)
- CCMP/AES
- Hash Functions
- EAP
- EAP Entities
- EAP Grammar
- EAP Types
- EAP-TTLS
- EAP-PSK
- EAP-SIM
- EAP-AKA
- IEEE 802.11i
- Four-Way Handshake
- IEEE 802.11i Considerations